Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.420
Filtrar
1.
J Mol Biol ; 435(24): 168344, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926426

RESUMO

Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.


Assuntos
Anticorpos Antibacterianos , Bordetella pertussis , Vacina contra Coqueluche , Coqueluche , Humanos , Lactente , Anticorpos Antibacterianos/imunologia , Bordetella pertussis/imunologia , Imunidade , Imunização , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Desenvolvimento de Vacinas
3.
Epidemiol Infect ; 150: e39, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35229710

RESUMO

Diphtheria is a potentially devastating disease whose epidemiology remains poorly described in many settings, including Madagascar. Diphtheria vaccination is delivered in combination with pertussis and tetanus antigens and coverage of this vaccine is often used as a core measure of health system functioning. However, coverage is challenging to estimate due to the difficulty in translating numbers of doses delivered into numbers of children effectively immunised. Serology provides an alternative lens onto immunisation, but is complicated by challenges in discriminating between natural and vaccine-derived seropositivity. Here, we leverage known features of the serological profile of diphtheria to bound expectations for vaccine coverage for diphtheria, and further refine these using serology for pertussis. We measured diphtheria antibody titres in 185 children aged 6-11 months and 362 children aged 8-15 years and analysed them with pertussis antibody titres previously measured for each individual. Levels of diphtheria seronegativity varied among age groups (18.9% of children aged 6-11 months old and 11.3% of children aged 8-15 years old were seronegative) and also among the districts. We also find surprisingly elevated levels of individuals seropositive to diphtheria but not pertussis in the 6-11 month old age group suggesting that vaccination coverage or efficacy of the pertussis component of the DTP vaccine remains low or that natural infection of diphtheria may be playing a significant role in seropositivity in Madagascar.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacina contra Difteria, Tétano e Coqueluche/uso terapêutico , Difteria/prevenção & controle , Programas de Imunização , Imunoglobulina G/imunologia , Coqueluche/prevenção & controle , Adolescente , Bordetella pertussis/imunologia , Criança , Corynebacterium diphtheriae/imunologia , Difteria/epidemiologia , Difteria/imunologia , Feminino , Humanos , Lactente , Madagáscar/epidemiologia , Masculino , Estudos Soroepidemiológicos , Cobertura Vacinal , Coqueluche/epidemiologia , Coqueluche/imunologia
4.
Front Immunol ; 13: 838504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211125

RESUMO

Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.


Assuntos
Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Células T Auxiliares Foliculares/imunologia , Coqueluche/imunologia , Animais , Anticorpos Antibacterianos/sangue , Quimiocina CXCL13/sangue , Imunização Secundária , Memória Imunológica , Camundongos , Fatores de Tempo , Vacinação , Coqueluche/prevenção & controle
5.
BMC Immunol ; 22(1): 68, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641798

RESUMO

BACKGROUND: The necessity of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine in adolescence and adults has been emphasized since the resurgence of small-scale pertussis in Korea and worldwide due to the waning effect of the vaccine and variant pathogenic stains in the late 1990s. GreenCross Pharma (GC Pharma), a Korean company, developed the Tdap vaccine GC3111 in 2010. Recently, they enhanced the vaccine, GC3111, produced previously in 2010 to reinforce the antibody response against filamentous hemagglutinin (FHA). In this study, immunogenicity and efficacy of the enhanced Tdap vaccine compared and evaluated with two Tdap vaccines, GC3111 vaccine produced in 2010 previously and commercially available Tdap vaccine in a murine model. METHODS: Two tests groups and positive control group of Balb/c mice were primed with two doses of the diphtheria-tetanus-acellular pertussis (DTaP) vaccine followed by a single booster Tdap vaccine at 9 week using the commercially available Tdap vaccine or 2 Tdap vaccines from GC Pharma (GC3111, enhanced GC3111). Humoral response was assessed 1 week before and 2 and 4 weeks after Tdap booster vaccination. The enhanced GC3111 generated similar humoral response compare to the commercial vaccine for filamentous hemagglutinin (FHA). The interferon gamma (IFN-γ) (Th1), interleukin 5 (IL-5) (Th2) and interleukin 17 (IL-17) (Th17) cytokines were assessed 4 weeks after booster vaccination by stimulation with three simulators: heat inactivated Bordetella pertussis (hBp), vaccine antigens, and hBp mixed with antigens (hBp + antigen). A bacterial challenge test was performed 4 weeks after booster vaccination. RESULTS: Regarding cell-mediated immunity, cytokine secretion differed among the three simulators. However, no difference was found between two test groups and positive control group. All the vaccinated groups indicated a Th1 or Th1/Th2 response. On Day 5 post-bacterial challenge, B. pertussis colonies were absent in the lungs in two test groups and positive control group. CONCLUSIONS: Our results confirmed the immunogenicity of GC Pharma's Tdap vaccine; enhanced GC3111 was equivalent to the presently used commercial vaccine in terms of humoral response as well as cell-mediated cytokine expression.


Assuntos
Bordetella pertussis/fisiologia , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Células Th1/imunologia , Coqueluche/imunologia , Adesinas Bacterianas/imunologia , Adolescente , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade Humoral , Imunização Secundária , Imunogenicidade da Vacina , Interferon gama/metabolismo , Coreia (Geográfico) , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Virulência de Bordetella/imunologia
6.
Front Immunol ; 12: 730434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603306

RESUMO

Outer membrane vesicles (OMV) derived from Bordetella pertussis-the etiologic agent of the resurgent disease called pertussis-are safe and effective in preventing bacterial colonization in the lungs of immunized mice. Vaccine formulations containing those OMV are capable of inducing a mixed Th1/Th2/Th17 profile, but even more interestingly, they may induce a tissue-resident memory immune response. This immune response is recommended for the new generation of pertussis-vaccines that must be developed to overcome the weaknesses of current commercial acellular vaccines (second-generation of pertussis vaccine). The third-generation of pertussis vaccine should also deal with infections caused by bacteria that currently circulate in the population and are phenotypically and genotypically different [in particular those deficient in the expression of pertactin antigen, PRN(-)] from those that circulated in the past. Here we evaluated the protective capacity of OMV derived from bacteria grown in biofilm, since it was observed that, by difference with older culture collection vaccine strains, circulating clinical B. pertussis isolates possess higher capacity for this lifestyle. Therefore, we performed studies with a clinical isolate with good biofilm-forming capacity. Biofilm lifestyle was confirmed by both scanning electron microscopy and proteomics. While scanning electron microscopy revealed typical biofilm structures in these cultures, BipA, fimbria, and other adhesins described as typical of the biofilm lifestyle were overexpressed in the biofilm culture in comparison with planktonic culture. OMV derived from biofilm (OMVbiof) or planktonic lifestyle (OMVplank) were used to formulate vaccines to compare their immunogenicity and protective capacities against infection with PRN(+) or PRN(-) B. pertussis clinical isolates. Using the mouse protection model, we detected that OMVbiof-vaccine was more immunogenic than OMVplank-vaccine in terms of both specific antibody titers and quality, since OMVbiof-vaccine induced antibodies with higher avidity. Moreover, when OMV were administered at suboptimal quantity for protection, OMVbiof-vaccine exhibited a significantly adequate and higher protective capacity against PRN(+) or PRN(-) than OMVplank-vaccine. Our findings indicate that the vaccine based on B. pertussis biofilm-derived OMV induces high protection also against pertactin-deficient strains, with a robust immune response.


Assuntos
Membrana Externa Bacteriana/metabolismo , Biofilmes , Bordetella pertussis/metabolismo , Vesículas Extracelulares/metabolismo , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Animais , Membrana Externa Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/crescimento & desenvolvimento , Bordetella pertussis/genética , Bordetella pertussis/crescimento & desenvolvimento , Bordetella pertussis/imunologia , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Feminino , Imunização , Imunogenicidade da Vacina , Camundongos Endogâmicos BALB C , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/metabolismo , Desenvolvimento de Vacinas , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/imunologia , Coqueluche/metabolismo , Coqueluche/microbiologia
7.
EBioMedicine ; 72: 103612, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34649076

RESUMO

BACKGROUND: Tetanus, diphtheria, acellular pertussis, inactivated polio (Tdap-IPV) vaccines administered during pregnancy protect young infants from Bordetella pertussis (B. pertussis) infection. Whilst the impact of maternal Tdap-IPV vaccination on infants' humoral response to subsequent pertussis immunisation has been investigated, little is known about any impact on innate responses. METHODS: We investigated the immune response to B. pertussis in mothers and infants from Tdap-IPV-vaccinated and unvaccinated pregnancies, utilising a whole blood assay and flow cytometric phenotyping of neonatal natural killer (NK) cells, monocytes and dendritic cells. Blood was collected from mother and umbilical cord at birth, and from infants at seven weeks (one week pre-primary pertussis immunisation) and five months of age (one month post-primary pertussis immunisation). 21 mothers and 67 infants were studied. FINDINGS: Vaccinated women had elevated pro-inflammatory cytokine responses to B. pertussis. At birth, babies of vaccinated women had elevated IL-2 and IL-12 responses, elevated classical monocyte proportions, and reduced monocyte and NK cell cytokine responses. The elevated IL-2 response persisted to seven weeks-of-age, when lower IL-10 and IL-13 responses were also seen. One-month post-primary pertussis vaccination, infants from vaccinated pregnancies still had lower IL-10 responses to B. pertussis, as well as lower IL-4. INTERPRETATION: This study suggests that pertussis vaccination during pregnancy impacts infant cellular immune responses, potentially contributing to the modification of antibody responses already reported following primary immunisation against B. pertussis. FUNDING: National Institute for Health Research Imperial Biomedical Research Centre and IMmunising PRegnant women and INfants neTwork (funded by the GCRF Networks in Vaccines R&D).


Assuntos
Bordetella pertussis/imunologia , Imunidade Inata/imunologia , Vacinas/imunologia , Coqueluche/imunologia , Anticorpos Antibacterianos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Humanos , Imunidade Humoral/imunologia , Lactente , Recém-Nascido , Interleucinas/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , Gravidez , Vacinação/métodos
8.
Infect Immun ; 89(12): e0034621, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34516235

RESUMO

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage and intranasal vaccination of aP in B. pertussis challenged rats over a 9-day infection was compared to intramuscular wP (IM-wP)- and IM-aP-immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in the production of anti-B. pertussis IgG antibody titers similar to IM-wP- and IM-aP-vaccinated controls postchallenge. IN-aP also induced anti-B. pertussis IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against B. pertussis-induced cough, whereas OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both intranasal and oral gavage administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock-vaccinated challenge rats. The data presented in this study suggest that mucosal vaccination with aP can induce a mucosal immune response and provide protection against B. pertussis challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.


Assuntos
Bordetella pertussis/imunologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Imunidade nas Mucosas , Coqueluche/prevenção & controle , Animais , Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Ratos , Ratos Sprague-Dawley , Coqueluche/imunologia
9.
PLoS Pathog ; 17(9): e1009920, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34547035

RESUMO

RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMß2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMß2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I-III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMß2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines.


Assuntos
Toxina Adenilato Ciclase/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/química , Vacina contra Coqueluche , Fatores de Virulência de Bordetella/química , Toxina Adenilato Ciclase/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Bordetella pertussis , Camundongos , Domínios Proteicos/imunologia , Fatores de Virulência de Bordetella/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle
10.
Toxins (Basel) ; 13(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564636

RESUMO

Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.


Assuntos
Bordetella pertussis/imunologia , Imunidade nas Mucosas , Pulmão/imunologia , Células T de Memória/imunologia , Toxina Pertussis/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/prevenção & controle , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Coqueluche/imunologia
11.
Toxins (Basel) ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437379

RESUMO

Pertussis toxin (PT) is considered the main virulence factor causing whooping cough or pertussis. The protein is widely studied and its composition was revealed and sequenced already during the 1980s. The human immune system creates a good response against PT when measured in quantity. However, the serum anti-PT antibodies wane rapidly, and only a small amount of these antibodies are found a few years after vaccination/infection. Therefore, multiple approaches to study the functionality (quality) of these antibodies, e.g., avidity, neutralizing capacity, and epitope specificity, have been investigated. In addition, the long-term B cell memory (Bmem) to PT is crucial for good protection throughout life. In this review, we summarize the findings from functional PT antibody and Bmem studies. These results are discussed in line with the quantity of serum anti-PT antibodies. PT neutralizing antibodies and anti-PT antibodies with proper avidity are crucial for good protection against the disease, and certain epitopes have been identified to have multiple functions in the protection. Although PT-specific Bmem responses are detectable at least five years after vaccination, long-term surveillance is lacking. Variation of the natural boosting of circulating Bordetella pertussis in communities is an important confounding factor in these memory studies.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Antígenos de Bactérias/imunologia , Bordetella pertussis/imunologia , Toxina Pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Animais , Epitopos/imunologia , Humanos , Vacinação , Coqueluche/imunologia
12.
Front Immunol ; 12: 701285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211481

RESUMO

Background: Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives: In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method: The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results: While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion: Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.


Assuntos
Imunidade nas Mucosas/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Humanos
13.
Front Immunol ; 12: 666953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177905

RESUMO

Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.


Assuntos
Linfócitos B/imunologia , Bordetella pertussis/fisiologia , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Coqueluche/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Feminino , Citometria de Fluxo , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Vacinação
14.
APMIS ; 129(9): 556-565, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34120372

RESUMO

The reported incidence of pertussis in European countries varies considerably. We aimed to study specific Bordetella pertussis seroprevalence in Europe by measuring serum IgG antibody levels to pertussis toxin (anti-PT IgG). Fourteen national laboratories participated in this study including Belgium, Denmark, Finland, Greece, Hungary, Italy, Lithuania, Malta, Norway, Poland, Portugal, Romania, Spain, and Sweden. Each country collected approximately 250 samples (N = 7903) from the age groups 20-29 years (N = 3976) and 30-39 years (N = 3927) during 2010-2013. Samples were anonymous residual sera from diagnostic laboratories and were analyzed at the national laboratories by a Swedish reference method, a commercial ELISA kit, or were sent to Sweden for analysis. The median anti-PT IgG concentrations ranged from 4 to 13.6 IU/mL. The proportion of samples with anti-PT IgG ≥100 IU/mL, indicating a recent infection ranged from 0.2% (Hungary) to 5.7% (Portugal). The highest proportion of sera with anti-PT IgG levels between 50 and <100 IU/mL, indicating an infection within the last few years, was found in Portugal (12.3%) and Italy (13.9%). This study shows that the circulation of B. pertussis is quite extensive in adults, aged 20-39 years, despite well-established vaccination programs in Europe.


Assuntos
Coqueluche/epidemiologia , Adulto , Anticorpos Antibacterianos/sangue , Bordetella pertussis/imunologia , Europa (Continente)/epidemiologia , Feminino , Humanos , Imunoglobulina G/sangue , Incidência , Masculino , Estudos Soroepidemiológicos , Cobertura Vacinal/estatística & dados numéricos , Coqueluche/imunologia , Coqueluche/prevenção & controle , Adulto Jovem
15.
Infect Immun ; 89(10): e0012621, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097504

RESUMO

Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis. Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics that specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in Toll-like receptor 9 (TLR9)-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced tumor necrosis factor-α (TNF-α) and C-C motif chemokine ligand 2 (CCL-2) expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls, indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.


Assuntos
Bordetella pertussis/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Coqueluche/imunologia , Coqueluche/metabolismo , Coqueluche/microbiologia
16.
Nat Commun ; 12(1): 2871, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001895

RESUMO

Reported incidence of pertussis in the European Union (EU) and the European Economic Area (EEA) varies and may not reflect the real situation, while vaccine-induced protection against diphtheria and tetanus seems sufficient. We aimed to determine the seroprevalence of DTP antibodies in EU/EEA countries within the age groups of 40-49 and 50-59 years. Eighteen countries collected around 500 samples between 2015 and 2018 (N = 10,302) which were analysed for IgG-DTP specific antibodies. The proportion of sera with pertussis toxin antibody levels ≥100 IU/mL, indicative of recent exposure to pertussis was comparable for 13/18 countries, ranging between 2.7-5.8%. For diphtheria the proportion of sera lacking the protective level (<0.1 IU/mL) varied between 22.8-82.0%. For tetanus the protection was sufficient. Here, we report that the seroprevalence of pertussis in these age groups indicates circulation of B. pertussis across EU/EEA while the lack of vaccine-induced seroprotection against diphtheria is of concern and deserves further attention.


Assuntos
Difteria/epidemiologia , Tétano/epidemiologia , Coqueluche/epidemiologia , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/imunologia , Bordetella pertussis/fisiologia , Difteria/imunologia , Difteria/prevenção & controle , Vacina contra Difteria, Tétano e Coqueluche/administração & dosagem , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Europa (Continente)/epidemiologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Tétano/imunologia , Tétano/prevenção & controle , Coqueluche/imunologia , Coqueluche/prevenção & controle
17.
EBioMedicine ; 65: 103254, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33711798

RESUMO

BACKGROUND: The Bacillus Calmette-Guérin (BCG), the only vaccine against tuberculosis (TB) currently in use, has shown beneficial effects against unrelated infections and to enhance immune responses to vaccines. However, there is little evidence regarding the influence of BCG vaccination on pertussis. METHODS: Here, we studied the ability of BCG to improve the immune responses to diphtheria, tetanus, and acellular (DTaP) or whole-cell pertussis (DTwP) vaccination in a mouse model. We included MTBVAC, an experimental live-attenuated vaccine derived from Mycobacterium tuberculosis, in our studies to explore if it presents similar heterologous immunity as BCG. Furthermore, we explored the potential effect of routine BCG vaccination on pertussis incidence worldwide. FINDINGS: We found that both BCG and MTBVAC when administered before DTaP, triggered Th1 immune responses against diphtheria, tetanus, and pertussis in mice. Immunization with DTaP alone failed to trigger a Th1 response, as measured by the production of IFN-γ. Humoral responses against DTaP antigens were also enhanced by previous immunization with BCG or MTBVAC. Furthermore, exploration of human epidemiological data showed that pertussis incidence was 10-fold lower in countries that use DTaP and BCG compared to countries that use only DTaP. INTERPRETATION: BCG vaccination may have a beneficial impact on the protection against pertussis conferred by DTaP. Further randomized controlled trials are needed to properly define the impact of BCG on pertussis incidence in a controlled setting. This could be a major finding that would support changes in immunization policies. FUNDING: This work was supported by the Ministry of "Economía y Competitividad"; European Commission H2020 program, "Gobierno de Aragón"; CIBERES; "Fundação Butantan"; Instituto de Salud Carlos III and "Fondo FEDER".


Assuntos
Vacina BCG/administração & dosagem , Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Imunidade Humoral , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Difteria/imunologia , Difteria/prevenção & controle , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Incidência , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tétano/imunologia , Tétano/prevenção & controle , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Vacinação , Coqueluche/epidemiologia , Coqueluche/imunologia
18.
EBioMedicine ; 65: 103247, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33647770

RESUMO

BACKGROUND: Pertussis can lead to serious disease and even death in infants. Older adults are more vulnerable to complications as well. In high-income countries, acellular pertussis vaccines are used for priming vaccination. In the administration of booster vaccinations to different age groups and target populations there is a substantial between-country variation. We investigated the effect of age on the response to acellular pertussis booster vaccination in three European countries. METHODS: This phase IV longitudinal intervention study performed in Finland, the Netherlands and the United Kingdom between October 2017 and January 2019 compared the vaccine responses between healthy participants of four age groups: children (7-10y), adolescents (11-15y), young adults (20-34y), and older adults (60-70y). All participants received a three-component acellular pertussis vaccine. Serum IgG and IgA antibody concentrations to pertussis antigens at day 0, 28, and 1 year were measured with a multiplex immunoassay, using pertussis toxin concentrations at day 28 as primary outcome. This trial is registered with ClinicalTrialsRegister.eu (2016-003,678-42). FINDINGS: Children (n = 109), adolescents (n = 121), young adults (n = 74), and older adults (n = 75) showed high IgG antibody concentrations to pertussis toxin at day 28 with GMCs of 147 (95% CI 120-181), 161 (95% CI 132-196), 103 (95% CI 80-133), and 121 IU/ml (95% CI 94-155), respectively. A significant increase in GMCs for vaccine antigens in all age groups by 28 days was found which had decreased by 1 year. Differences in patterns of IgG GMCs at 28 days and 1 year post-vaccination did not have a consistent relationship to age. In contrast, IgA antibodies for all antigens increased with age at all timepoints. INTERPRETATION: Acellular pertussis booster vaccination induces significant serum IgG responses to pertussis antigens across the age range which are not uniformly less in older adults. Acellular boosters could be considered for older adults to reduce the health and economic burden of pertussis.


Assuntos
Anticorpos Antibacterianos/sangue , Imunoglobulina G/sangue , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Adolescente , Adulto , Idoso , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Criança , Feminino , Finlândia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Países Baixos , Vacina contra Coqueluche/imunologia , Reino Unido , Vacinação , Coqueluche/imunologia , Adulto Jovem
19.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499260

RESUMO

The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein-protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.


Assuntos
Toxina Adenilato Ciclase/uso terapêutico , Bioengenharia , Bordetella pertussis/enzimologia , Vacina contra Coqueluche/uso terapêutico , Engenharia de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Coqueluche/prevenção & controle , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Animais , Bordetella pertussis/genética , Bordetella pertussis/imunologia , Humanos , Vacina contra Coqueluche/genética , Vacina contra Coqueluche/metabolismo , Coqueluche/imunologia , Coqueluche/microbiologia
20.
Cytokine ; 137: 155313, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002739

RESUMO

Bordetella Pertussis (BP) vaccine-induced immunity is waning worldwide despite excellent vaccine coverage. Replacement of the whole-cell inactivated vaccine (wP) by an acellular subunit vaccine (aP) is thought to play a major role and to be associated with the recurrence of whooping cough. Previously, we detected that the polarization towards a Th2 and Th1/Th17 response in aP and wP vaccinees, respectively, persists upon aP boosting in adolescents and adults. Additionally, IL-9 and TGF-ß were found to be up-regulated in aP-primed donors and network analysis further identified IFN-ß as a potential upstream regulator of IL-17 and IL-9. Based on these findings, we hypothesized that IFN-ß produced following aP vaccination may lead to increased IL-9 and decreased IL-17 production. Also, due to the well characterized role of TGF-ß in both Th17 and Th9 differentiation, we put forth that TGF-ß addition to BP-stimulated CD4 + T cells might modulate IL-17 and IL-9 production. To test this hypothesis, we stimulated in vitro cultures of PBMC or isolated naive CD4 + T cells from aP vs wP donors with a pool of BP epitopes and assessed the effect of IFN-ß or TGF-ß in proliferative responses as well as in the cytokine secretion of IL-4, IL-9, IL-17, and IFN-γ. IFN-ß reduced BP-specific proliferation in PBMC as well as cytokine production but increased IL-9, IL-4, and IFN-γ cytokines in naïve CD4 + T cells. These effects were independent of the childhood vaccination received by the donors. Similarly, TGF-ß reduced BP-specific proliferation in PBMC but induced proliferation in naïve CD4 + T cells. However, stimulation was associated with a generalized inhibition of cytokine production regardless of the original aP or wP vaccination received by the donors. Our study suggests that key T cell functions such as cytokine secretion are under the control of antigen stimulation and environmental cues but molecular pathways different than the ones investigated here might underlie the long-lasting differential cytokine production associated with aP- vs wP-priming in childhood vaccination.


Assuntos
Bordetella pertussis/imunologia , Linfócitos T CD4-Positivos/imunologia , Interferon beta/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Coqueluche/imunologia , Adulto , Bordetella pertussis/fisiologia , Linfócitos T CD4-Positivos/microbiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Vacina contra Coqueluche/imunologia , Vacinação , Vacinas Acelulares/imunologia , Coqueluche/microbiologia , Coqueluche/prevenção & controle , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...